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ABSTRACT

Context. Understanding the effects of the lower solar atmosphere on the spectrum of standing kink oscillations of coronal loops, in
both the decaying and decayless regime, is essential for developing more advanced tools for coronal seismology.

Aims. We aim to reveal the effects of the chromosphere on the spatial profiles and frequencies of the standing kink modes, create
synthetic emission maps to compare with observations, and study the results using spatial and temporal coronal seismology techniques.
Methods. We excited transverse oscillations in a 3D straight flux tube using (a) a broadband footpoint driver, (b) a sinusoidal velocity
pulse, and (c) an off-centre Gaussian velocity pulse, using the PLUTO code. The flux tube is gravitationally stratified, with footpoints
embedded in chromospheric plasma. Using the FoMo code, we created synthetic observations of our data in the Fe IX 17.1 nm line and
calculated the spectra with the Automatic Northumbria University Wave Tracking code. We also numerically solved the generalised
eigenvalue system for the 1D wave equation to determine the effects of the stratification on the kink modes of our system.

Results. The synthetic observations of the loops perturbed by the velocity pulses show a single dominant mode that our 1D analysis
reveals to be the third harmonic of the system. For the broadband driver, the synthetic emission shows multiple frequency bands,
associated with both the loop and the driver. Finally, using seismological techniques, we highlight the possibility of misidentifying
the observed third, sixth, and ninth harmonics with the first, second, and third harmonics of the coronal part of the loop. Unless
more advanced techniques of spatial seismology are used with many data points from observations along the entire loop length, this
misidentification can result in overestimating the mean magnetic field by a factor equal to the period ratio of the fundamental over the
third harmonic.

Conclusions. For longer coronal loops it is easy to misidentify the detected standing kink modes for lower-order modes of the system,
which can have important seismological implications. To prevent these errors and properly constrain the value of the estimated mean
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magnetic field, additional observations of the loops footpoints using transition region and chromospheric lines are necessary.
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1. Introduction

Measuring quantities such as the mean magnetic field or the den-
sity in the solar atmosphere is a task that requires a combination

LC) of observations, theory, and numerical modelling to extract in-

o™

formation about the local plasma parameters. Coronal seismol-

>' ogy (e.g. Roberts et al. 1984; Nakariakov & Verwichte 2005)

X
S

uses observed waves in the solar atmosphere, which are under-
stood to be magnetohydrodynamic (MHD) waves in inhomoge-
neous plasma (Edwin & Roberts 1983), to perform such calcula-
tions. Space-based telescopes such as the Transition and Coronal
Explorer (TRACE; Handy et al. 1999), the Solar Dynamics Ob-
servatory/Atmospheric Imaging Assembly (SDO/AIA; Lemen
et al. 2012), and the Solar Orbiter/Extreme Ultraviolet Imager
(EUI; Rochus et al. 2020) have revealed an omnipresence of
transverse oscillations that are understood to be kink waves
(Van Doorsselaere et al. 2008) and which have been extensively
used for plasma diagnostics. Observations of kink waves have re-
vealed both propagating motions in open and closed field regions
(for a review, see Morton et al. 2023) and standing oscillations
in structures such as coronal loops (see Nakariakov et al. 2021,
for a review).

For the case of standing kink oscillations in loops, two dif-
ferent regimes have been discovered. The first is the decaying
regime first reported in Aschwanden et al. (1999) and Nakari-
akov et al. (1999). It is characterised by quickly decaying oscil-
lation amplitudes, with the oscillations being excited by external
energetic phenomena (e.g. Nechaeva et al. 2019), coronal rain
(Verwichte et al. 2017; Verwichte & Kohutova 2017; Kohutova
& Verwichte 2017), and nanojets (Sukarmadji & Antolin 2024).
In addition, the coexistence of multiple harmonics in decaying
oscillations of loops has been demonstrated (e.g. De Moortel &
Brady 2007; Duckenfield et al. 2019). The second regime con-
sists of decayless oscillations (e.g. Wang et al. 2012; Tian et al.
2012), which are characterised by a near-constant oscillation am-
plitude over many periods (Nistico et al. 2013). These stand-
ing oscillations are observed in the solar atmosphere in loops of
different scales (e.g. Wang et al. 2012; Nistico et al. 2013; An-
finogentov et al. 2013, 2015; Anfinogentov & Nakariakov 2019;
Zhong et al. 2022a,b; Li & Long 2023; Zhong et al. 2023b).
However, their interpretation as standing waves is still a matter
of debate for most observations in shorter transition region loops
and coronal loops (Gao et al. 2022; Petrova et al. 2023; Gao et al.
2024; Shrivastav et al. 2024). It was recently shown in Lim et al.
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(2024b) that under-sampling due to low cadence can lead to an
overestimation of the oscillation periods in shorter loops, giving
rise to the observed lack of a correlation between the periods and
loop lengths for shorter loops.

Simulations of decayless oscillations have hinted at an en-
ergy content sufficient to counterbalance the radiative losses in
the quiet Sun corona (e.g. Karampelas et al. 2019; Shi et al.
2021; De Moortel & Howson 2022). Recent meta-analysis stud-
ies of observations (e.g. Lim et al. 2023, 2024a) have found that
the high-frequency regime of decayless oscillations can heat the
quiet Sun corona, but cannot support the wave heating in ac-
tive regions unless unresolved oscillations with frequencies up
to 0.17 Hz are considered. Decayless standing waves are also re-
ported to exhibit linear polarisation (see e.g. Zhong et al. 2023a,
for a combined observation with SDO/AIA and the High Reso-
lution Imager HRIgyy of Solar Orbiter/EUI), while the coexis-
tence of multiple harmonics (first and second) was also reported
in Duckenfield et al. (2018). Equally important is that decay-
less oscillations still have an unidentified excitation mechanism,
with different hypotheses proposing it to be broadband footpoint
drivers (Afanasyev et al. 2020; Ruderman & Petrukhin 2021;
Ruderman et al. 2021; Howson & De Moortel 2023; Karam-
pelas & Van Doorsselaere 2024), p-modes (Skirvin et al. 2023;
Gao et al. 2023), plasma flows along the loop (Kohutova & Ver-
wichte 2018), and external flows (Nakariakov et al. 2009, 2016;
Karampelas & Van Doorsselaere 2020, 2021). Additionally, An-
tolin et al. (2016) suggest that apparent observations of decay-
less oscillations are actually observations of decaying oscilla-
tions muddled by line-of-sight effects.

As stated earlier, transverse kink oscillations have been used
extensively as tools in coronal seismology. For example, by mea-
suring the period of the fundamental kink mode and the loop
length, we can calculate the kink speed of the loop and then esti-
mate the average Alfvén speed and the average magnetic field
using common seismology techniques (e.g. Edwin & Roberts
1983; Roberts et al. 1984; Aschwanden & Schrijver 2011; An-
finogentov & Nakariakov 2019; Zhong et al. 2023b; Gao et al.
2024). Longitudinal density stratification and the expansion of
the magnetic field can also lead to the modification of the spa-
tial profile and the respective frequency of the fundamental kink
mode and its overtones (e.g. Andries et al. 2005b, see also An-
dries et al. 2009 for a review). For example, Verth et al. (2007)
showed that the antinode of the second harmonic is shifted to-
wards the loop footpoints as the density scale height decreases,
for a flux tube with a straight magnetic field (see also Erdélyi
& Verth 2007). If multiple kink mode harmonics are present in
the same oscillating loop, then their ratios can be used to deter-
mine the density scale height, assuming again that there is no
variation in the magnetic field (Andries et al. 2005a; Safari et al.
2007). The effects of the lower solar atmosphere and the transi-
tion region have started to be incorporated in 3D simulations of
open flux tubes and coronal loops in studies of wave propagation
(Pelouze et al. 2023), excitation of decayless oscillations (e.g.
Gao et al. 2023; Karampelas & Van Doorsselaere 2024), and
wave energy dissipation (e.g. Guo et al. 2023; Karampelas et al.
2024). Howson & Breu (2023) have numerically shown from
the 1D Sturm-Liouville problem describing an oscillating loop
(Dymova & Ruderman 2005) that the existence of the transition
region and the chromosphere will greatly modify the profile of
the harmonics of standing Alfvén and kink waves. It was also
suggested that this deformation could be potentially misleading
when trying to identify the oscillation modes in observations of
loop systems.
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We studied the effects of the lower solar atmosphere on the
spatial profiles and frequencies of standing kink modes of coro-
nal loops driven by noisy footpoint motions. Our aim is to iden-
tify the individual modes in our simulation results and create
synthetic emission maps that can be compared with observa-
tions. We also applied the techniques of coronal seismology to
understand the importance of the lower atmosphere when using
kink oscillations as plasma diagnostic tools for quantities such as
the kink speed and mean magnetic field. In Sect. 2 we describe
the initial conditions of our 3D coronal loop model and how we
excite the oscillations of interest. Section 3 describes the results
of the simulations, the creation and analysis of our synthetic ob-
servations, the equivalent 1D eigenvalue problem, and the use of
seismological tools. Finally, Sect. 4 includes a discussion of the
most important points of this study.

2. Numerical setup

This numerical study is based on the analysis of our setup that
consists of a stratified 3D straight magnetic flux tube, mod-
elling a coronal loop with chromospheric footpoints. The nu-
merical setup is similar to the ones in Karampelas & Van
Doorsselaere (2024) and Karampelas et al. (2024). Following
our past work, we initialised a 2D model in hydrostatic equi-
librium along the vertical z direction, using sinusoidal gravity
(g-(z) = 274 cos(m z/200) in m s™2), to emulate the gravity vari-
ation along a semi-circular loop. We ran a 2.5D resistive MHD
simulation to let our model reach a quasi-equilibrium state and
we then interpolated into a 3D domain.

The initial profiles for the magnetic field (B), density (o), and
temperature (7') are

{B,, By, B.} = {0,0,30} G (1
T(r,z) = Tcn + (Te(r) = Ten)(1 = [(L = 2/(L = Ac)1H™, (2)
Tce(r) =Tce+ (Tci—Tce) L(r), 3)
Pch = Pche + (Ochi — Pche) {(F), 4)
L(r)=0.5[1 —tanh (([r/R] — 1) 20)], 5)

where the subscripts C and Ch correspond to the coronal (z =
100 Mm) and chromospheric (z = 0,200) values. The temper-
ature in the transition region and the corona is calculated for
height z € [5, 195] Mm. The loop length is L = 200 Mm, while
Ach = 5Mm is the width of our chromosphere. For z < 5 Mm
and z > 195 Mm, we considered a uniform chromospheric tem-
perature of T¢, = 0.02 MK. The temperature at the apex (Tc(r))
is Tc; = 1MK and Tc. = 1.5MK inside and outside the flux
tube, respectively. The density is pcn; = 3.51 x 108 kg m=3 in-
side the footpoints and pcne = 1.17 X 1078 kg m™3 outside the
footpoints. The function {(r) calculates the loop cross-section,
with R = 1 Mm being the loop minor radius.

For the 2.5D domain (r € [0,8] Mm and z € [0,200] Mm),
we took 200 x 2048 uniformly spaced grid points in cylindri-
cal coordinates. We considered axisymmetry at » = 0 and open
boundary conditions at » = 8 Mm. At the z-axis boundaries,
we used zero-gradient conditions for the magnetic field compo-
nents, anti-symmetric conditions for the velocity components,
symmetric conditions for the density, and a constant tempera-
ture. We then let the setup reach a semi-equilibrium state for a
total time of + = 3890 s, reducing the velocity values per iter-
ation as vj.g; = Ujrez/1.0001 for t € [778,3112]s, similarly
to Pelouze et al. (2023) and Guo et al. (2023). Figure 1 shows
the post relaxation 2D temperature profile as well as 1D profiles
for the density and magnetic field inside (i, r = 0) and outside
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Fig. 1. Post 2.5D MHD relaxation profiles for the temperature, density, B, magnetic field, and kink speed of our stratified flux tube. Left: 2D
temperature profile for a section of our model up to » = 3 Mm. Top right: 1D profiles along the z direction of the density (black lines) and B,

magnetic field (red lines) at » = O (solid lines) and at » = 8 Mm (dashed
coronal part (z € [7, 193] Mm) highlighted (dashed orange line).
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Fig. 2. Profiles of the velocity driver and pulses used in the three 3D simulations. Left panels: Temporal profile of the v, driver at z = 0O for the first
simulation (top) and its corresponding power spectrum (bottom). Right panel: Two initial velocity conditions used in the two simulations without

the footpoint driver.

(e, r = 8 Mm) the flux tube. After the relaxation, the magnetic
field has been restructured through advection and dissipation and
is no longer purely vertical, but also has a radial component (B,)
that has its a maximum value near the loop footpoints. This max-
imum value of the B, is an order of magnitude lower than the
vertical component (B;) there. The vertical component gets its
minimum value near r = 0 at the footpoint, and its maximum
value at r ~ 1.5 Mm near the footpoint, as was shown for a sim-
ilar setup in Karampelas et al. (2024). At larger radii, as well as
towards the transition region and the corona, the radial compo-
nent is almost zero, and the magnetic field is near-vertical there.
Similarly to Karampelas et al. (2024), the loop minor radius does
not change post relaxation, but is approximately R = 1 Mm, with
the exception of the footpoints (z = 0, 200 Mm) where it has in-

creased to R = 1.2Mm. Finally, in Fig. 1 we also plot the cal-
culated kink speed (Ckink) along the z-axis, with the coronal part
(z € [7,193] Mm) highlighted.

We interpolated the post 2.5D relaxation slice into a Carte-
sian grid of size x € [-4,4]Mm, y € [0,4]Mm and z €
[0,200] Mm, with 6x oy 0.040 Mm everywhere, 0z
0.098 Mm for z < 10 Mm and z > 190 Mm and 6z = 0.8 Mm for
24Mm < z > 176 Mm. We considered stretched grids with 40
cells each for I0Mm < z < 24 Mm and 176 Mm < z < 190 Mm.

For the 3D cases, we took open boundary conditions at x =
—4,4Mm and y = 4 Mm and reflective boundary conditions at
the y = 0, which allowed us to simulate only half of the loop.
Along the z-axis, we considered symmetric boundary conditions
for both density and pressure, as well as zero-gradient conditions
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Fig. 3. Centre of mass displacement (left panels) and corresponding power spectra density profiles (right panels) for the three simulations of
our 3D loop. The time-distance maps of the displacement along the x-direction show the magnified (x20) signal projected along the z-axis for
visualisation purposes. Only the coronal part of the loop is depicted. Shown are the simulations with the driver (top), with the symmetric initial

pulse (middle), and with the asymmetric pulse (bottom).

for the magnetic field and anti-symmetric boundary conditions
for the vy, v, and v, velocity components, apart from the case
where a velocity driver is employed for v, and v, at z = 0, for
1 <202 s.

Two different cases are considered in the numerical part of
this study. For the first case, we used a model similar to that
in Karampelas & Van Doorsselaere (2024), where at z = 0 for
t > 202s, we applied a broadband, linearly polarised velocity
driver:

{vx, vy} = {V(0) {(ra, 1), 0}, (6)
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with the function {(r) from Eq. 5 calculating the driver cross-

section and ry v (x — xp())* + y? being the location of the

driver centred at xo(¢) with radius R = 2.5 Mm. The velocity sig-
nal V(¢) follows a red noise spectrum (~ f~1% where f is the
frequency), constructed through the colorednoise 2.1.0 python
package (see also Afanasyev et al. 2020), but with reduced power
at the lower frequencies (< 1.5 mHz) after using a high-pass fil-
ter, similar to that used in Karampelas et al. (2024). The left pan-
els of Fig. 2 show the velocity driver profile and its respective
spectrum. The RMS velocity (Vgys) of the signal (~ 0.94 km
s~!) is comparable to the RMS velocities of the horizontal mo-
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Fig. 4. Time-distance maps of the synthetic emission in the 171 A line, for the three cases of oscillating loops, at the apex. Left column: SDO/AIA
resolution. Middle column: Solar Orbiter/HRIgyy resolution. Right column: MUSE/SG resolution. Top panels: Loop with the broadband driver.
Middle panels: Loop with the sinusoidal, symmetric pulse. Bottom panels: Asymmetric, off-centre Gaussian pulse. Overplotted in each panel are
the oscillating signal of the loop centre (black asterisks) and a fitted sinusoidal function (solid red line) with the four prominent frequencies for

each signal, as detected by Auto-NUWT.

tions of magnetic bright points (~ 1.32km s~!) derived from the
Swedish 1 m Solar Telescope (SST) and Hinode observations
(Chitta et al. 2012), which could be treated as loop footpoints
motions.

For the second case, we ran two simulations in which we
impulsively perturbed the flux tube with an initial condition in
the v, velocity. We used a sinusoidal pulse, which is symmetric
with respect to the apex and an off-centre Gaussian pulse, which
was asymmetric with the respect to the apex:

vy = 15Z(r) sin(mz/L),
vy = 45£(r) exp ((z - 80)/30)*.

(N
®)

Both velocity pulses are given here in km s~!, and z is in Mm.
The radius of the velocity pulse cross-section, defined by £(r)
from Eq. 5, is R = 1.2 Mm to ensure that the entire flux tube
cross-section is perturbed. We note that a different amplitude was
used so that the initial displacement of the flux tube would be of
the same order. In the right panel of Fig. 2, we see the velocity
initial condition used to perturb our flux tube in the two simula-
tions of that setup.

We solved the compressible MHD equations for a hydrogen
plasma using the PLUTO code (Mignone et al. 2007). We en-
forced the V - B = 0 condition through a hyperbolic divergence
cleaning method. We used anisotropic thermal conduction, with
the thermal conduction coefficient (in Js™' K~!' m™") from the
Spitzer conductivity (Orlando et al. 2008), and the method for
artificially broadening the transition region during the simula-
tion, described in Linker et al. (2001), Lionello et al. (2009), and
Mikic et al. (2013):

_ T5/2 if T >25%x10°K
_ 12 , > ,
f =356x10 { 25x 1072, ifT<25x 105K,
k. =33x1072 nd /(NTB). (10)

Our setup has a different value for the parallel thermal conduc-
tion coefficients than the ones used in Karampelas & Van Doors-
selaere (2024) and Karampelas et al. (2024) in order to match
the values used in Guo et al. (2023) and Gao et al. (2023). In the
2.5D setup, explicit magnetic diffusivity (7 = R,! = 107*) was

used to improve the code stability, while none was used in the
3D case. Our numerical scheme also introduces effective numeri-
cal diffusivity, with a corresponding effective magnetic Reynolds
number of Ry, e = 10* - 10°.

3. Results

We ran three 3D MHD simulations, in which our stratified loop
performed transverse oscillations. In the first case, our loop is
perturbed by a footpoint broadband and a linearly polarised
driver, while in the second and third case we used a sinusoidal
pulse symmetric along the loop velocity and an off-centre Gaus-
sian velocity pulse asymmetric along the loop, respectively. We
limited our 3D study mostly to the coronal part of our system,
and we treated the chromosphere as a mass reservoir of near-
constant temperature. However, we focused on the importance
of the large gradients in the transition region for our understand-
ing the dynamics of the standing transverse oscillation modes.

3.1. 3D loop simulations and forward modelling

Our reference step is to revisit and expand upon the result in our
past work, as this is the basis for the upcoming analysis. In Fig.
3 we plot the time-distance maps of the loop displacement for
the three simulations, alongside their respective spectra derived
from Fourier analysis. The loop displacement was calculated by
tracking the position of the loop centre of mass at each xy-plane
through a weighted surface averaging, with (o(z) — 0.(2)* as
the weight. Subtracting the external background density (p.) and
squaring reduced the effects of the background plasma in the cal-
culation of the centre of mass. The left panels of Fig. 3 show the
displacement for a small selection of coronal heights, while we
used the entire array when calculating the spectra in the right
panels. We also note that while the loop displacement is along
the x-direction, the left panels depict the magnified signal pro-
jected on the z-axis for better visualisation.

As was shown in Karampelas & Van Doorsselaere (2024)
for a red noise driver and in Karampelas et al. (2024) for a sim-
ilar driver with less power in the lower frequencies, such foot-
point drivers excite persisting transverse oscillations with a non-
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Fig. 5. Distribution of oscillation frequencies, detected with Auto-NUWT at each height, z, from the synthesised 171 A line emissions. The colour
bars correspond to the normalised amplitude of the oscillation for each detected frequency. As in Fig. 4, the left, middle, and right columns
correspond to SDO/AIA, Solar Orbiter/HRIgyy, and MUSE/SG resolution, while the top, middle, and bottom panels correspond to the simulations
with the broadband driver, symmetric pulse, and asymmetric pulse, respectively.

decaying, fluctuating amplitude. This can be seen on the top left
panel of Fig. 3. Examining the spectra in the top right panel, we
again identify a frequency band at ~ 5 mHz that spatially re-
sembles the fundamental standing kink mode of the coronal part
of the loop (and was understood as such in Karampelas & Van
Doorsselaere 2024). We also identify many higher harmonics,
as well as wide frequency band at ~ 2 — 3.5 mHz, the nature of
which was not fully understood in our past work (see Karam-
pelas & Van Doorsselaere 2024) and which was called descrip-
tively as ‘half harmonic’.

The middle panels of Fig. 3 show the time-distance map and
spectra for the loop excited by symmetric sinusoidal velocity
pulse. When considering the same sinusoidal pulse in Karam-
pelas & Van Doorsselaere (2024), wavelet spectra for the oscil-
lation signal at the apex revealed a strong signal at ~ 5mHz
and a very weak one at ~ 2.5 mHz, which was one of the pri-
mary reasons why the harmonic at 5 mHz was understood as the
fundamental mode, the other reason being its spatial distribution
along the loop for the driven oscillations. In this study, we re-
peated this experiment, and, as shown on the middle panels of
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Fig. 3, we calculated the spectra along the loop length and again
see a very strong harmonic at ~ 5 mHz that resembles the funda-
mental mode of the oscillating coronal part of the loop. Along-
side it, we also detect a weaker signal at ~ 2.5 mHz matching the
previously mentioned half harmonic.

In the bottom panels of Fig. 3 we plot the same quantities as
before but for the loop perturbed by an asymmetric, off-centre
Gaussian pulse. This type of pulse was chosen to model in a
more realistic way a transverse oscillation in a loop excited by
a random pulse rather than aiming to excite a specific harmonic.
As stated earlier, the amplitude of the velocity pulse was cho-
sen so that the resulting oscillation has a similar amplitude to
the case where the symmetric pulse was used. From the spec-
tra, we again see that the main signal is coming from the mode
around 5 mHz, with a much weaker signal than before seen at
2.5 mHz. Additionally, we also see higher harmonics at ~ 8, 12
and 16 mHz, whose frequencies and spatial profiles make them
appear as the second, third, and fourth harmonics with respect to
the mode at ~ 5 mHz, for a gravitationally stratified coronal loop
(e.g. Andries et al. 2005a; Safari et al. 2007).
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Fig. 6. Normalised eigenfunctions of the 1D oscillating string system and its corresponding frequencies. Left: Solution for the entire system. Right:
Solution when only the coronal part of the system is used. The cyan shaded region highlights the coronal part in the left panel.

To compare our results with observations of decayless os-
cillations, we performed forward modelling to create synthetic
observations for our 3D simulations. We used the FoMo code
(Van Doorsselaere et al. 2016) to calculate the extreme ultra-
violet (EUV) emission for the Fe IX 171 A line from the op-
tically thin coronal part of our oscillating loops. The 171 A
line is ideally suited to the temperature range of the coronal
part of our models, since it has its maximum formation tem-
perature of logT = 5.93. In our analysis we targeted the spa-
tial resolution of current and upcoming instruments, specifically
the SDO/AIA, the Solar Orbiter/EUI HRIgyy and the Specto-
graph (SG) on board the Multi-slit Solar Explorer (MUSE; De
Pontieu et al. 2022; Cheung et al. 2022). While SDO/AIA cov-
ers the 171 A line and MUSE/SG is designed to do so as well,
Solar Orbiter/HRIgyy has a channel that covers instead the 174
A line. This line, however, covers a similar temperature range
as the 171 A line, so we can use the latter as a proxy in our
analysis, similarly to Petrova et al. (2023). We degraded the
original spatial resolution of the synthetic images to 0.6 for
SDOJAIA, to 0.4 for MUSE/SG, and to 200 %200 km? for Solar
Orbiter/HRIgyy, assuming that Solar Orbiter is located at a dis-
tance of 0.52 AU from the Sun. That was the distance when the
observations of high-frequency decayless oscillations discussed
by Petrova et al. (2023) took place with Solar Orbiter. We note
here that the time resolution of our results (~ 15.52s) was not
changed. Therefore, caution is needed when directly comparing
to Solar Orbiter/HRIgyy data (4 s cadence) and to a lesser extent
to SDO/AIA and MUSE/SG data (~ 12 s).

The time-distance maps of the 171 A line emission for
the three simulations of the oscillating loops at the apex,
for the resolution of the three instruments (SDO/AIA, Solar
Orbiter/HRIgyy, and MUSE/SG), are shown in Fig. 4. We note
here that we synthesised observations at each height along the
three loops but here only show the results at the apex. The top
panels show the results for the loop perturbed by the footpoint
driver, while the middle and bottom panels show the results for
the impulsive oscillations excited by the symmetric Gaussian ve-
locity pulse and the off-centre exponential, asymmetric veloc-
ity pulse. We used the Automatic Northumbria University Wave
Tracking code (Auto-NUWT; Morton et al. 2013; Weberg et al.
2018) to track the transverse motions of our loops. The code
tracks the loop position by measuring the intensity gradients.
The position of each loop along the x-axis is overplotted on the
panels of Fig. 4. The different bin size used for resampling the

data at each resolution can affect the readings of the intensity
gradient, leading to slight differences in the measured oscillation
signal from each targeted instrument. While the simulation with
the broadband driver clearly shows a non-decaying, fluctuating
amplitude, the oscillations excited by the two different pulses
show no qualitative difference regarding the amplitude and the
oscillation period. This implies that the two different pulses are
expected to have similar power spectra density profiles, as was
shown for the displacement of the centre of mass in Fig. 3.

Since our focus in this study is the spectra of the excited
transverse oscillations, we wanted to extract the relevant infor-
mation from the synthetic emission and compare it with the re-
sults in Fig. 3. Using the location of the loop centre, we then
used Auto-NUWT to identify the frequencies detected for the
transverse oscillations through a Fourier analysis with a 95%
significance level. In each panel of Fig. 4 we show the fit of the
following sum of sine functions:

4

x(7) = Z ¢ sin(% + ) + xo,

i=1

(1)

where the coefficient ¢; is the displacement amplitude for each
respective period (P;) and x is just the position of the loop at
t = 0. As we see in Fig. 4, this fit seems to not precisely track
the loop centre (black asterisks) for the model with the broad-
band footpoint driver (top panels). This is because only the four
frequencies with the highest amplitudes (c;) are used for the fit
in Eq. 11, while additional frequencies with less power are omit-
ted. The models with the initial velocity perturbation (middle
and bottom panels) show a better agreement between the fit and
the detected loop centre, because they only exhibit one dominant
frequency, as was also shown in Fig. 3. Here, we also note that
damping coefficients are not included in our analysis, as shown
in Eq. 11.

The distribution and relative strength of the detected frequen-
cies along each loop, for each instrument resolution is shown in
Fig. 5. The panels here follow the layout of Fig. 4. Focusing on
first in the middle and bottom panels, we see that the synthetic
images for the oscillations excited by the symmetric and asym-
metric velocity pulses respectively exhibit very similar spectra,
with one dominant frequency at ~ 5mHz and with very small
differences between the different instrument resolutions. This is
the same frequency band detected for these two cases in the spec-
tra in Fig. 3. Some additional frequencies with very low power
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Fig. 7. Successful tests of y* goodness of fit between the eigenfunctions of the 1D oscillating string system (blue crosses, observations) and the
eigenfunctions of the 1D system using a coronal model for the density and magnetic field distribution (solid orange line, prediction). Our models

2
crit

have a y? critical value of y

= 14 at @ = 0.05 (95% significance level) with seven degrees of freedom. Bottom panels: Purely coronal system.

Top and middle: Full-length 1D system. Shown are observations fit with the first harmonic of our predicted 1D model (left column) and the
second harmonic (right). The first, second, third, and sixth harmonic are used as observations. The predicted scale height, magnetic field, scaling

parameter, and y? test result are included in each panel.

are detected near footpoints, which can be attributed to noise
near the bottom of the corona - top of the transition region in our
setups. This is also at the tail end of the temperature range of the
171 A line. A few points are highlighted near the apex at about
0.5 mHz, for the asymmetric pulse case, as seen in the AIA res-
olution. However, this can also be attributed to noise, since no
respective signal has been detected in the spectra in Fig. 3. We
should highlight here that no other harmonic or mode in general
can be detected in the middle and bottom panels, apart from the
one at ~ SmHz.

For the simulation with the footpoint driver, the detected fre-
quencies from the synthetic observations are shown in the top
panels of Fig. 5. Unlike the other two cases, multiple frequency
bands are detected along the loop, including the one at ~ 5 mHz.
Traces of higher frequency modes are present here, but the main
signal comes from the frequency range of the previously men-
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tioned half harmonic. We detect distinct frequency bands along
z at ~ 2.5, 3.5 and 4 mHz. Increasing the resolutions reduces
the number of frequencies with power above the 95% signifi-
cance level, again showing the effects that the resolution has on
the detection algorithms. It is also interesting to note that while
the frequency band at 5 mHz has a power distribution along z
with the maximum at the apex and minima near the footpoints,
the other frequency bands at lower frequencies exhibit additional
strong power near the driven footpoint at z = 0. This implies that
they are at least partially associated with the driving frequencies
of the footpoint driver. A similar phenomenon was observed in
simulations of short loops in Gao et al. (2023), where the fre-
quency of an inclined p-mode driver also manifested in wavelet
spectra of the transverse oscillations alongside the fundamental
mode and it harmonics. Also, in Karampelas & Van Doorsse-
laere (2024), the addition of a different driver to the second foot-
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for measuring the third harmonic.

point did not modify the spectra, but seemed to reinforce these
frequencies near the second footpoint.

3.2. 1D wave equation eigenvalue problem

To better understand the nature of the observed frequency bands
in the spectra of our oscillating loops and conclude which are
associated with the oscillating system itself and which with the
broadband nature of the footpoint driver, we needed to calculate
the natural frequencies of the standing transverse modes of our
system. An analytical approach is not feasible for the scope of
this study, due to the non-uniform nature of the kink speed of
our system and its strong gradients along the loop. Instead, we
employed the approach used in Dymova & Ruderman (2005),
and the approach used in Howson & Breu (2023) for the case
of Alfvén waves. For the thin tube approximation, the modes

and frequencies of non-axisymmetric, transverse oscillations of
loops were calculated using the Sturm-Liouville problem

8u w?

U, @ u=o,
022 0}(2)

u(z=0,L)=0. (12)

The phase speed along the loop vy, is taken equal to the kink
speed Ckink that we have calculated and show in Fig. 1. We nu-
merically solved Eq. 12 to find the eigenfunctions u that corre-
spond to the standing kink mode harmonics and the eigenvalues
w? = (f/2m)?, which give the respective frequencies f for each
harmonic. We note here that the thin tube approximation used
to derive Eq. 12 is only valid for the coronal part of our loop
model. For the part of the loop below the corona, the scale height
and thus also the vertical scale are expected to drop significantly
from their coronal values, reducing the validity of the thin tube
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approximation. Therefore, the results of Eq. 12 are taken as an
approximation of the actual transverse modes of the system.

Figure 6 shows the normalised transverse oscillation modes
and their frequencies for our loop model. The left panel shows
the solutions for our entire loop, or when the entire Ckjnx pro-
file from Fig. 1 was used, and the right panel shows the so-
lutions only for the coronal part of the loop (i.e. when only
the coronal part of the Ckinx profile was used, shown with the
dashed orange line on the bottom right panel of Fig. 1). Focus-
ing on the left panel, we notice that the normalised eigenfunc-
tions are deformed, with the nodes of the higher-order harmon-
ics being pushed towards the footpoints of our loop. This effect
has been been reported in past studies of straight flux tubes and
was deemed to be caused by the density stratification along the
tube axis for models with a straight magnetic field along height
(e.g. Erdélyi & Verth 2007; Verth et al. 2007), that is, for loops
with a non-expanding magnetic field. Similarly to Howson & De
Moortel (2022), we see that the existence of the transition region
leads to an extreme manifestation of this effect. Considering a
coronal loop rooted at the base of the corona, we get eigenfunc-
tions with less extreme deformation with respect to the case of
no density stratification, as we see in the right panel of Fig. 6.
From the mode profiles for the two cases considered here, we
see that the first two kink oscillation harmonics, which are the
fundamental mode and the first overtone, are significantly de-
formed, with both of them exhibiting large amplitudes near the
base of the corona (z ~ 7 and 193 Mm). As expected, such a
qualitative behaviour is absent from the coronal loop model, for
which all harmonics exhibit nodes at the base of the corona. Ad-
ditionally, modes like the third, sixth, ninth, and twelfth harmon-
ics of the full loop have nodes located below, but near the base of
the corona and show similar spatial profiles to the first, second,
third, and fourth harmonics for the coronal loop.

From the same two panels of Fig. 6, we also get the frequen-
cies of each oscillations mode, shown in the respective legends.
Focusing on the case of the full loop (left panel), we see that
the fundamental mode and the first overtone have frequencies
f1 = 2.69 mHz and f, = 2.76 mHz, respectively. These fre-
quencies fall within the range of the half harmonic mode that is
detected in the spectra shown in Figs. 3 and 5. These two modes
exhibit very similar frequencies, due to the extreme density gra-
dient in the transition region (Andries et al. 2005b,a). The third
harmonic has an eigenfrequency equal to f3 = 4.75 mHz, which
is shown to be very similar to that of the fundamental standing
kink mode of the coronal part of our loop (f; = 5,09 mHz), as
shown in the right panel of Fig. 6. It is also very interesting to
note that the eigenfrequencies included higher harmonics for the
full loop (fs = 8.34 mHz, fy = 12.20 mHz and f;; = 16.03
mHz) are again similar to those of the second (f, = 8.93 mHz),
third (f3 = 13.07 mHz) and fourth harmonics (fy = 17.22 mHz)
of the coronal loop, in the same way as their respective spatial
profiles.

The results of the 1D analysis can thus explain the findings
in our past work (Karampelas & Van Doorsselaere 2024; Karam-
pelas et al. 2024) as well as in Figs. 3 and 5. What we have
descriptively been referring to as half harmonic is in fact the
combined result of the loop expected eigenmodes with the added
effects of the continuous broadband driving, when the footpoint
driver is employed. The thin frequency band around 2.5 mHz de-
tected for the oscillating loops without the footpoint driver cor-
respond to the fundamental and first overtone of the system. The
additional frequencies between 2.5 and 3.5 mHz detected for the
loop with the footpoint driver are associated with the spectrum
of the broadband driver itself. This is further reinforced by the
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results in simulations of short loops (Gao et al. 2023), where
the frequency of an inclined p-mode driver also manifested in
wavelet spectra of the transverse oscillations alongside the fun-
damental mode and the second and third harmonics. Addition-
ally, in simulations of a stratified but purely coronal loop per-
turbed with monochromatic footpoint drivers of various frequen-
cies, the 3D flux tube would exhibit a resonant response to the
monochromatic drivers, even for small deviations from the reso-
nant frequency (Afanasyev et al. 2019). Although not focused on
in that study, this could be the result of the non-linear evolution
of the loop profile due to the development of the instabilities.
The frequency band at ~ 5 mHz, detected in Fig. 3 and in Fig.
6 is the third harmonic of the full-loop system with frequency
f3 = 4.75 mHz. In past studies (Karampelas & Van Doorsse-
laere 2024; Karampelas et al. 2024) this mode was misidentified
as the fundamental mode of the system, due to its spatial profile
and as we see from the right panel of Fig. 6, this mode closely
resembles the fundamental mode of the coronal part of our loop
model. This mode gives a strong signal in the spectra from the
synthetic observations of the driven model and is the dominant
mode in the spectra for the oscillating loops without the foot-
point driver. The prominence of this mode could therefore lead
to it being misidentified with the fundamental mode, which in
turn can have implications for coronal seismology, as was dis-
cussed in Howson & Breu (2023), as well as in Karampelas &
Van Doorsselaere (2024) for a a system driven by a broadband
footpoint driver. Our 1D analysis also helps us identify the na-
ture of the higher harmonics detected in the panels of Fig. 3, the
frequencies and spatial profile of which seems to closely match
that of the harmonics expected from the 1D eigenvalue system.

3.3. Using the 1D eigenfunctions for seismology

To explore how the effects of the density stratification can in-
fluence the results derived by seismological techniques, we em-
ployed various tools to study the results from our 1D analysis. In
arecent paper by Chen et al. (2023), spatial seismology methods
were used to infer the density scale and magnetic field expansion
factor. This was done by fitting observations of transverse oscil-
lations of loops with the expected profiles of transverse standing
oscillations modes, using a x> goodness of fit test. Here we em-
ployed a similar approach to calculate the density scale height
and magnetic field for various cases. For the role of observations,
we considered randomly selected data points (17;, measurements)
from (a) the first, second, third and sixth harmonics of the full-
loop system, as well as (b) from the first and second harmonic of
the coronal loop system. For both cases, we used the results de-
rived from the 1D eigenvalue problem of Eq. 12. As predictions
¥, we used the first and second harmonics from the eigenvalue
problem of Eq. 12, calculated for a phase speed (vpn(z)) equal
to the kink speed of a coronal loop model with an exponential
density profile, in sinusoidal gravity like in our 3D simulations,
with a straight, uniform magnetic field, B:

B = {0,0, B,} = {0,0, B} (13)

Pie = poje exp (~Lsin (z/L) /(xH) (14)

€= (pO,e/pO,i) =0.1 (15)
piVii+pVi, 2 B

0(2) = — 2 = (16)

pi+tpe  l+epop;

Here, the subscripts ‘i’ and ‘e’ indicate the values at the centre of
the loop cross-section and at a radial distance of » = 8 Mm from
the loop, respectively, V4 is the Alfvén speed, L = 186 Mm is the



Karampelas et al.: Oscillation spectra of stratified loops

length of the fitted coronal loop model and pg; = 20.63 x 10712
kg m3 is the density value inside the loop at the bottom of the
corona, for the considered model.

To fit the model, we employ the same technique as described
in Chen et al. (2023). We first coded an iterative stochastic global
search optimisation algorithm, known as a simulated annealing
algorithm. Starting from an initial guess for the density scale
height (H = 40 Mm) and the uniform magnetic field (B, = 30
G), we performed at each iteration a y?> goodness of fit test:

N N 32
XZ(H, C) — Z (l,l/(H, Zl) CU:) ] (17)
i=1

Y(H,z)

The coefficient ¢ is used to normalise the observations 7; and
generally has dimensions the inverse of the dimensions of the
observations. As an initial guess for this coefficient we take
c = ni‘rlnax. The total number of measurements are equal to N.
At each iteration, we solve Eq. 12 for randomly adjusted values
of H and c, and we use the new prediction i to minimise the y?
statistic. We then compare the final value of the y? against the
critical value for the y? test (,\/Zm), at 95% significance level (or

a = 0.05) with N — 1 degrees of freedom. If y? is above the criti-
cal value, then we reject the null hypothesis that the observations
are part of predicted values. If the critical value is above the x*
statistic, then we fail to reject the hypothesis, and thus we con-
sider the model to be a good fit for the observations. Once we
reach a good fit, we then vary the value of the uniform magnetic
field B, for the predicted eigenfrequency of the model to match
the frequency of the observations.

The results for our set of successful y? fitting tests are shown
in the panels of Fig. 7. For our tests, we have a critical value
sz = 14 for 7 degrees of freedom (N = 8 data points) and
a 95% significance level. We took data points from (a) the first,
second, third and sixth harmonics of the full-loop system and (b)
from the first and second harmonics of the coronal loop system.
We then fit those data points with the first and second harmon-
ics calculated for the coronal loop model with the exponential
density profile, described in Eq. 15.

Starting with the modes for the full loop, when fitting the
observations of the third (sixth) harmonic of the full loop with
the fundamental (first overtone) of the fitted 1D model gives us
H =419 Mm (H = 46.2 Mm) and B = 37.4 G. The magnetic
field in particular is very close to the mean value in our 3D mod-
els (B, = 30 G), showing the strength of this seismological tech-
nique. On the other hand, considering the fundamental and first
overtone of the full-loop system as observations leads to vastly
different results for the scale height (H = 9.2 and 2.1 Mm) and
the magnetic field (B = 5.2 and 1.2 G). This big difference in the
results is due to the fact that the first two harmonics of the full-
loop system are the most influenced by the sharp gradients in the
transition region, rendering the usual approach in seismology of
fitting simple coronal model profiles problematic.

To test the validity of our y? goodness of fit tests, we com-
pared our results with more traditional seismological techniques,
using the formulas for the ratio of periods derived in Andries
et al. (2005a) and Safari et al. (2007):

Py = Pyinc(1 + L/(37°H))™', (18)
Py = Pxink(2 + 2L/ (157%H)) ™!, (19)
P3 = Pxink(3 + 3L/ (357°H)) !, (20)

where Pginx = 2L/Cxkink 1S the period of the fundamental stand-
ing kink mode for a loop of the same length, mean magnetic

field, and no density stratification along its axis, with density
equal to its value at the footpoints (Edwin & Roberts 1983). Us-
ing the modes for the full loop, the periods of the fundamental
(Py) and the second harmonic (P,) give P;/P, = 1.03 (for an
observed loop length in coronal lines equal to L = 186 Mm)
and a corresponding scale height of H = 4.03 Mm. The latter
is the same order of magnitude to the values calculated from the
x? tests. If we instead misidentify the third and sixth harmonic
as the first and second, then we get P gyse/P2fase = 1.76 and
H = 34.9 Mm, which again is similar to the results of the y? fit
tests.

Applying the same y? goodness of fit tests when using the
first (second) harmonics of the coronal part of the loop as mea-
surements, we then get H = 37.7 Mm (H = 39.1) Mm for the
scale height and B = 37.6 G (B = 39.1 G) for the magnetic field,
respectively. The results can be seen in the bottom two panels of
Fig. 7. These values for the derived scale height and the mag-
netic field are very close to those we get for the third and sixth
harmonics of the full-loop system. Additionally, when filling in
the values from the modes of the coronal part of the loop in Egs.
18-20, and considering the same loop length as in the case of the
full loop, we get Py /P, = 1.75 and H = 34.6 Mm. These results
further hint to the possibility of observations misidentifying the
order of the observed standing kink modes, if we assume that the
oscillations occurred along the entire loop length and not just the
coronal part. For reference, when using the modes for the coro-
nal part of the loop and considering the same loop length we get
P/P, =1.75 and H = 34.6 Mm.

3.4. Seismological implications for transverse oscillations

In the context of coronal seismology, it is also useful to revisit
the results from older observational studies and try to understand
them in light of our current results. In Duckenfield et al. (2018),
both the first and second harmonics were detected in an observa-
tion of a decayless transverse oscillation of a coronal loop with
a period ratio equal to P, /P, = 1.4. The third harmonic was de-
tected in an observation of a decaying transverse oscillation of
coronal loops in Duckenfield et al. (2019), with the period ratio
of the fundamental to the third harmonic equal to P;/P3; = 2.61.
Considering our 1D eigenvalue problem for our full-loop sys-
tem, the corresponding period ratios obtained are P;/P, = 1.03
and P;/P3; = 1.77. These values seem to significantly deviate
from the observations. However, if we assume that the third,
sixth, and ninth harmonics were misidentified for the first, sec-
ond, and third harmonics, we obtain ratios that match the obser-
vations: Plyfa[se/szfalse = 1.76 and Pl,false/P&fa[se = 2.57. Unsur-
prisingly by this point, if we consider the first three harmonics of
the coronal loop system, the same ratios give P;/P, = 1.75 and
Py/P3 = 2.57, which are again a good match to the observations.
Although a larger statistical sample is needed for observations
and simulations of oscillating stratified loops, the period ratios
above indicate that the observed modes for standing oscillations
of longer coronal loops either are purely coronal in nature, with
the part of the loop below the corona not being perturbed, or are
the modes that exhibit nodes near the base of the corona.

Our analysis so far has focused only on our loop setup, which
models a longer coronal loop with length 200 Mm. However, re-
cent observations of short coronal and transition region loops
with length < 50 Mm have also revealed transverse decayless
oscillations. Unlike with the longer coronal loops, most stud-
ies of decayless oscillations in short loops (e.g. Gao et al. 2022;
Petrova et al. 2023; Shrivastav et al. 2024; Gao et al. 2024) could
not conclusively characterise these waves as standing or propa-
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gating, leaving their interpretation still open. Despite that, the
assumption of them being standing waves has been used exten-
sively in these studies when considering them for seismology.
Lim et al. (2024b) show that under-sampling can lead to overes-
timation of the oscillation periods, producing values that match
the observations for shorter loops. The difference with respect
to the longer coronal loops is that a higher percentage of the to-
tal length of these short loops will be located below the corona.
Therefore, we expect these short loops to exhibit qualitatively
different spatial profiles of their kink oscillation modes. To get
better insight into the oscillatory profiles of these shorter loops,
we repeated our analysis with the 1D wave equation eigenvalue
system for a short loop of length 30 Mm. The kink speed profile
that we used as phase speed in Eq. 12 was taken from the numer-
ical model of a short coronal loop model that was used in Gao
et al. (2023). This profile of the kink speed is shown in the left
panel of Fig. 8. The approximate height of the top of the transi-
tion region is this model is located at height z = 4.2 Mm above
each footpoint. As a reference, the coronal part of the kink speed
profile is also shown. The right panel of Fig. 8 shows the spa-
tial profiles of the standing kink modes for this system and their
respective frequencies. For reference, the derived frequencies of
the first, second and third harmonics reported in Gao et al. (2023)
are fi = 13.98 mHz, f, = 18.62 mHz and f; = 24.04 mHz, with
Py/P, = 1.33 and P,/P3 = 1.72. From this panel, we see that
it is easier to distinguish between the first and third harmonics,
due to the proximity of the loop apex to the base of the corona. In
fact, the oscillation of such a low-lying loop would likely be vis-
ible in transition region lines, as was the case with the observed
decayless oscillations in transition region loops reported in Gao
et al. (2024). Therefore, in the case of shorter, low-lying loops
we expect less ambiguity over the order of the observed standing
kink modes, than in longer coronal loops.

The aforementioned possible ambiguity over the order of
standing kink modes in coronal loops, as it translates to the ob-
servations of transverse decaying and decayless oscillations can
have seismological implications. For example, the observed pe-
riods of the fundamental mode and the loop length can be used
to calculate the kink speed and through that average magnetic
field, when combined with estimates of the plasma density and
the ratio of densities inside and outside of the oscillating loops
(see for example Anfinogentov & Nakariakov 2019; Zhong et al.
2023b; Gao et al. 2024). In Fig. 9 we plot the oscillation period
and corresponding kink speed with respect to the loop length, for
data taken from a number of past studies (Wang et al. 2012; Nis-
tico et al. 2013; Anfinogentov et al. 2013, 2015; Anfinogentov &
Nakariakov 2019; Zhong et al. 2022a,b; Gao et al. 2022, 2024;
Li & Long 2023; Petrova et al. 2023; Shrivastav et al. 2024).
The left panel shows the scatter plot of the period versus the
loop length. The blue circles represent the original observations
for short loops, with a length of less than 50 Mm (dashed verti-
cal line), the value of which was arbitrary chosen. We show the
original observations of long coronal loops and the best linear fit
(P = a L) with coefficient a = 1.103 +0.043 s Mm™'. Estimating
the kink speed as Ckinx = 2L/ Pkink, Where Pxink is considered as
the period of the fundamental standing kink mode, we get an av-
erage kink speed Ckinx = 1.81 Mm s~!. The estimated kink speed
with respect to the loop length for each observation is shown in
the right panel of Fig. 9. Considering now the possible ambigu-
ity between the first and the third kink modes in long loops, we
corrected the values of the observed periods in Fig. 9 by a factor
of 1.77, since P; = 1.77 P3. Here we used the results for our sys-
tem as a suggested average correction for the observations of the
long loops (L > 50 Mm). The corrected values for the period and
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the estimated kink speed are shown in both panels. From the new
linear fit we get a coefficient @ = 1.953+0.076 and a new average
kink speed of Ckinc = 1.02 Mm s~!. Using common seismology
techniques (e.g. Anfinogentov & Nakariakov 2019; Zhong et al.
2023b; Gao et al. 2024), we can calculate the average magnetic
field of an oscillating loop with the following formula:

_ Ho(i +pe) _ 2L [uo(pi + pe)
B = Cxinx > =P > ,
Kink

where p is the magnetic permeability. If we take for the ob-
served Pkinx = P3 instead of Py, due to the described ambiguity,
then for the average calculated magnetic field we have

B _ 2L polpi+pe) _ Pr(2L [uo(pi +pe)
cale = p. 2 P; | P, 2 ’

and therefore B.yc = (P1/P3) Brea- For a mean background mag-
netic field of B, = 30 G, as in our model, the field calculated
from the observed quantities will be overestimated by a factor of
Py /P5 (here 1.77), giving Beye = 1.77 X 30 ~ 53 G.

2D

(22)

4. Discussion and conclusions

We explored the nature of the spectra in a gravitationally strat-
ified loop with footpoints anchored in chromospheric plasma
by performing transverse oscillations. Our base model consists
of a 3D straight flux tube, which is perturbed in three differ-
ent simulations by (a) a footpoint linearly polarised broadband
velocity driver, (b) a symmetric sinusoidal velocity pulse, and
(c) an asymmetric off-centre Gaussian pulse. We limited our 3D
study mostly to the coronal part of our system and treated the
chromosphere as a mass reservoir of near-constant temperature.
We also performed a complimentary analysis, solving the gener-
alised eigenvalue problem for the 1D wave equation with nodes
at the footpoints, for a system with phase speed equal to the
kink speed profile of the 3D loop. Finally, we performed for-
ward modelling with our simulation data and then explored the
seismological implications of our findings.

When tracking the centre of mass of our loop, the oscillation
spectra reveal the existence of multiple harmonics when either
the broadband driver or the off-centre velocity pulse are used to
perturb the flux tube, as shown in Fig. 3. Our 1D analysis re-
veals that the observed signatures correspond to the frequencies
of the system eigenmodes (Fig. 6), which have been deformed
due to the large gradients in the values of density with height.
The so-called half-harmonic that was reported in our past studies
(Karampelas & Van Doorsselaere 2024; Karampelas et al. 2024)
is now understood to consist of the deformed fundamental kink
mode and the second harmonic, and in the case of the broadband
driver it also has the signatures of driving frequencies. What was
understood in past studies as the fundamental mode is in fact the
third harmonic of the system. However, our analysis shows that
this third harmonic of the full-length loop (and also the sixth,
ninth, and twelfth harmonics) exhibits similar frequencies and
spatial profiles in the corona as the fundamental mode (and also
the second, third, and fourth harmonics) of the coronal part of
that loop. This similarity is due to the nodes that these harmon-
ics exhibit near the base of the corona for our system.

Creating synthetic observations of our 3D simulations and
tracking the centre of the loop at different resolutions, we ex-
tracted the oscillation frequencies that would have been de-
tected in real observations of a system matching our model. The
broadband driver excites a standing wave with many frequencies
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present, consisting of multiple harmonics and frequencies asso-
ciated with the driving. Most observations of decayless oscilla-
tions seem to have a single dominant period (e.g. Anfinogentov
et al. 2015; Petrova et al. 2023), and it is rare to detect higher-
order harmonics (Duckenfield et al. 2018). As such, our findings
cast doubts on the idea that broadband drivers could be one of
the possible mechanisms responsible for the excitation of decay-
less oscillations in coronal loops. For a conclusive answer on the
nature of the drivers of these oscillations, realistic driving pro-
files that follow observational data need to be employed in future
numerical studies.

Focusing on the oscillations excited by the initial velocity
pulses, our spectra from the synthetic observations in the 171
A line reveal only one dominant frequency band, which matches
the third harmonic of the full-length loop. This mode, which also
resembles the fundamental mode of the coronal part of the loop,
can easily be misidentified as the fundamental mode of the full-
length loop. The time-distance maps of the oscillating loops at
the apex in Fig. 4 show signals of decaying amplitude over time
with a single frequency. However, the oscillations get progres-
sively harder to track after the first two to three periods due to
the small initial amplitude. Considering the overlap of features
in real observations, or the different levels of contrast of the in-
tensity between the loop and the background, it is possible for
these decaying oscillations to be categorised as decayless with
a fundamental frequency at ~ 4.75 mHz unless a longer part of
the signal is clearly visible for a longer time. It is worth not-
ing that some recent observations of decayless oscillations have
shown them to have relatively short durations (up to four cycles;
e.g. Shrivastav et al. 2024; Lim et al. 2024a), creating ambiguity
as to their interpretation as decaying or decayless oscillations,
similar to what was discussed for our data.

As mentioned, the third harmonic of our oscillating loop can
be misidentified as the fundamental kink mode of the loop (see
also Howson & Breu 2023). This misidentification is caused by
the deformation of the harmonic modes due to the low values of
the kink speed and the density scale height at the loop footpoints,
below the transition region. However, our 3D numerical setup is
characterised by a very wide chromosphere (Az = 5Mm) and
an unphysically broadened transition region, which are not rep-
resentative of the solar atmosphere. Therefore, our results are
expected to differ from those for a more realistic profile of the
solar atmosphere. Past studies have treated coronal loops as reso-
nant cavities for low-frequency fluctuations (e.g. Hollweg 1984;
Verdini et al. 2012), with resonant waves being confined in the
coronal part and experiencing wave leakage through the sharp
transition region. It is unclear, therefore, how a realistic chromo-
spheric and transition region profile will affect the kink modes of
our 3D model. Our 1D analysis predicts the existence of the pre-
viously mentioned deformed harmonics, as well as the respec-
tive values for the frequencies of these modes, as derived from
the 3D simulations. However, as stated in Sect. 3.2, the thin tube
approximation used to derive Eq. 12 is not valid below the tran-
sition region for our model. This means that the results of our
1D analysis can only be taken as an approximation of the ac-
tual transverse modes of the system. In addition, the results of
the 1D analysis also depend on the profiles of the loop and the
lower solar atmosphere considered in our model. In Appendix A
we show the effects of different kink speed profiles on the so-
lutions of Eq. 12, highlighting this further. From the above, it
becomes clear that a proper parameter study based on realistic
profiles of the lower solar atmosphere is required (a) to enable
a detailed examination of the spatial profiles of the oscillation
modes in the 3D simulations, (b) to examine the validity of us-

ing Eq. 12 for loops anchored in chromospheric plasma, and (c)
to conclude on the possibility of misidentifying the order of the
observed transverse oscillations in loops, and the applicability of
our findings.

The presence of transverse oscillations has been confirmed
in shorter loops (e.g. Gao et al. 2022; Li & Long 2023; Petrova
et al. 2023; Shrivastav et al. 2024; Gao et al. 2024), with the
recent study by Lim et al. (2024b) showing that they can be in-
terpreted as standing waves with periods shorter than the tempo-
ral resolution of our current observatories. This suggests that the
transverse oscillations observed in coronal loops might not nec-
essarily be confined to the corona, similar to how the kink modes
in our 3D numerical model also persist along the entire length of
the loop. This seems to invalidate the treatment of loops as res-
onant cavities that confine waves in their coronal part while tak-
ing the effects of leakage from the footpoints into account (e.g.
Hollweg 1984; Verdini et al. 2012). However, we again note that
our models are characterised by an artificially broadened transi-
tion region. The effects of a sharp transition region on transverse
standing waves in loops need to be properly explored in future
numerical studies. Due to this uncertainty, observations at chro-
mospheric and transition region lines at the footpoints of oscil-
lating loops are necessary to identify the observed kink modes
as either purely coronal modes or modes of the full-loop system
before making any seismological estimations.

More advanced techniques of spatial coronal seismology,
such as the y? optimisation process shown in this study, produce
results with a good agreement between full-loop harmonics and
coronal loop harmonics. However, many data points along the
entire length of the loop are required to properly constrain the
estimated mean magnetic field values. Therefore, we conclude
that the current approach in seismology, where only the standing
modes in the coronal part of the loops are considered, can only
be justified if there is definitive proof that the oscillatory motion
is confined to the corona. Unveiling the dynamics of oscillating
loops in the lower corona, the chromosphere and the transition
region through simultaneous high-resolution and high-cadence
observations from upcoming missions such as MUSE is essen-
tial for future seismological studies.
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Appendix A: Solving the 1D wave equation
eigenvalue problem for different phase speeds
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Fig. A.1. Different kink speed profiles used as phase speeds in Eq.
12 and its respective solutions. Left: Kink profiles near one footpoint.
Right: Corresponding first (solid blue lines) and third (dashed orange
lines) harmonics along the entire length of the loop.

In Sect. 3.2 we solve the Sturm-Liouville problem of Eq. 12
to find the modes and frequencies of non-axisymmetric, trans-
verse oscillations of loops, considering the thin tube approxima-
tion. To further explore the effects that the profile of the lower
solar atmosphere has on the solutions of Eq. 12, we performed
a parameter study that considers different phase speed profiles.
We used a set of five profiles (C; to Cs) that explores the effects
of the width of the chromosphere and the transition region, as
well as the values of the kink speed in the chromosphere with
respect to the corona. The C; profile is the kink speed of our
post-relaxation 2D loop profile, as seen in Fig. 1. C, is the kink
speed derived from the initial conditions of our pre-relaxation
2D profile, and is characterised by a sharper transition region.
Both C and C; are derived for a loop with a wide chromosphere
(Az = 5Mm). C3 is a kink speed profile derived for a loop with
a narrower chromosphere (Az = 2 Mm). C4 and Cs are modified

versions of Cs, for uniform chromospheric values of the kink
speed.

The results of our parameter study can be seen in Fig. A.1.
Comparing the harmonics for the C; and C,, we see that the
width of the transition region, for the range considered here, does
not generate qualitatively different results regarding the shape of
the kink modes or the values of the frequencies for each har-
monic. Reducing the width of the chromosphere (C3) can influ-
ence the shape of the kink modes and their frequencies substan-
tially, but the results are highly affected by the properties of the
chromosphere and the shape of the resulting kink speed profile
there (C4, Cs). For example, having chromospheric kink speeds
values that are less than 10% of the coronal ones (C,4) can still
lead to results similar to those presented for the C profile, even
for a narrow chromosphere with a sharp transition region.

We conclude that the width of the solar chromosphere and
the local properties that define the kink speed of a loop are of
great importance when deriving the kink modes of the reduced
1D Sturm-Liouville problem of Eq. 12.
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